MTH 201

Multivariable calculus and differential equations
 Homework 6
 Double integral

1. Evaluate each of the following double integrals over the given rectangular region
(a) $\iint_{D}\left(2 x+4 y^{3}\right) d A, D=[0,4] \times[0,3]$
(b) $\iint_{D} \frac{1}{2 x+3 y} d A, D=[0,1] \times[1,2]$
(c) $\iint_{D} \frac{1}{1+x+y} d A, D=[1,3] \times[1,2]$
(d) $\iint_{D} x \cos ^{2} y d A, D=[0,3] \times[0, \pi / 2]$
(e) $\iint_{D} x \sin x y d A, D=[0,1] \times[0, \pi / 2]$
(f) $\iint_{D} x e^{-x y} d A, D=[0,2] \times[0,3]$.
2. Find the volume of the solid that lies above the square $Q=[0,2] \times[0,2]$ in $x y$-plane and below the paraboloid $z=16-x^{2}-y^{2}$.
3. Find the volume of the solid that lies under the elliptic paraboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+z=1$ and above the rectangle $R=[-1,1] \times[-2,2]$ in $x y$-plane.
4. Find the volume of the solid enclosed by the surface $z=1+e^{x} \sin y$ and the planes $x=1, x=-1, y=0, y=\pi$, and $z=0$.
5. Evaluate each of the following double integrals over the given region D
(a) $\iint_{D}\left(6 x^{2}-40 y\right) d A$, where D is the triangle with vertices $(0,3),(1,1)$, and $(5,2)$
(b) $\iint_{D} e^{\frac{x}{y}} d A, D=\left\{(x, y): 1 \leq y \leq 2, y \leq x \leq y^{3}\right\}$
(c) $\iint_{D}\left(4 x y-y^{3}\right) d A$, where D is the region bounded by $y=\sqrt{x}$ and $y=x^{3}$.
6. Find the volume of the solid that lies below the surface given by $z=16 x y+200$ and lies above the region in the $x y$-plane bounded by $y=x^{2}$ and $y=8-x^{2}$.
(HW)
7. Find the volume of the solid enclosed by the planes $4 x+2 y+z=10, y=3 x, z=0$, and $x=0$.
8. Evaluate the following double integrals (use polar co-ordinates)
(a) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{0} \frac{4 \sqrt{x^{2}+y^{2}}}{1+x^{2}+y^{2}} d x d y$.
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos \left(x^{2}+y^{2}\right) d x d y$.
(c) $\iint_{D} 2 x y d A$, where D is the portion of the region between the circles of radius 2 and radius 4 centered at the origin that lies in the first quadrant.
(HW)
(d) $\iint_{D} e^{x^{2}+y^{2}} d A$, where D is the unit circle centered at the origin.
(e) $\iint_{D}\left(x^{2}+y^{2}\right) d A$, where D is the portion of the unit circle centered at the origin in the first quadrant.
(f) $\iint_{D}\left(3 x+4 y^{2}\right) d A$, where D is the region in the upper half plane bounded by circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

MTH 201 Homework 6 (Continued)

9. Find the volume of the solid bounded by the plane $z=0$ and the parallelopiped $z=$ $1-x^{2}-y^{2}$.
10. Find the volume of the region that lies inside $z=x^{2}+y^{2}$ and below the plane $z=16$.
11. Determine the volume of the region that lies under the sphere $x^{2}+y^{2}+z^{2}=9$, above the plane $z=0$, and inside the cylinder $x^{2}+y^{2}=5$.
12. Find the area of the region
(a) that is enclosed by the cardioid $r=1+\cos \theta$
(b) that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$.
(c) enclosed by one leaf of the rose $r=12 \cos (3 \theta)$.
(d) cut from the first quadrant by the cardioid $r=1+\sin \theta$.
